\(\int \frac {x^3 \sqrt {a+c x^2}}{d+e x} \, dx\) [317]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 211 \[ \int \frac {x^3 \sqrt {a+c x^2}}{d+e x} \, dx=-\frac {\left (8 c d^3-e \left (4 c d^2-a e^2\right ) x\right ) \sqrt {a+c x^2}}{8 c e^4}-\frac {7 d \left (a+c x^2\right )^{3/2}}{12 c e^2}+\frac {(d+e x) \left (a+c x^2\right )^{3/2}}{4 c e^2}+\frac {\left (8 c^2 d^4+4 a c d^2 e^2-a^2 e^4\right ) \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{8 c^{3/2} e^5}+\frac {d^3 \sqrt {c d^2+a e^2} \text {arctanh}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e^5} \]

[Out]

-7/12*d*(c*x^2+a)^(3/2)/c/e^2+1/4*(e*x+d)*(c*x^2+a)^(3/2)/c/e^2+1/8*(-a^2*e^4+4*a*c*d^2*e^2+8*c^2*d^4)*arctanh
(x*c^(1/2)/(c*x^2+a)^(1/2))/c^(3/2)/e^5+d^3*arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/(c*x^2+a)^(1/2))*(a*e^2+c
*d^2)^(1/2)/e^5-1/8*(8*c*d^3-e*(-a*e^2+4*c*d^2)*x)*(c*x^2+a)^(1/2)/c/e^4

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {1668, 829, 858, 223, 212, 739} \[ \int \frac {x^3 \sqrt {a+c x^2}}{d+e x} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right ) \left (-a^2 e^4+4 a c d^2 e^2+8 c^2 d^4\right )}{8 c^{3/2} e^5}+\frac {d^3 \sqrt {a e^2+c d^2} \text {arctanh}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{e^5}-\frac {\sqrt {a+c x^2} \left (8 c d^3-e x \left (4 c d^2-a e^2\right )\right )}{8 c e^4}-\frac {7 d \left (a+c x^2\right )^{3/2}}{12 c e^2}+\frac {\left (a+c x^2\right )^{3/2} (d+e x)}{4 c e^2} \]

[In]

Int[(x^3*Sqrt[a + c*x^2])/(d + e*x),x]

[Out]

-1/8*((8*c*d^3 - e*(4*c*d^2 - a*e^2)*x)*Sqrt[a + c*x^2])/(c*e^4) - (7*d*(a + c*x^2)^(3/2))/(12*c*e^2) + ((d +
e*x)*(a + c*x^2)^(3/2))/(4*c*e^2) + ((8*c^2*d^4 + 4*a*c*d^2*e^2 - a^2*e^4)*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]
])/(8*c^(3/2)*e^5) + (d^3*Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/e^
5

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 829

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*((a + c*x^2)^p/(c*e^2*(m + 2*p + 1)*(m +
 2*p + 2))), x] + Dist[2*(p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1668

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff
[Pq, x, Expon[Pq, x]]}, Simp[f*(d + e*x)^(m + q - 1)*((a + c*x^2)^(p + 1)/(c*e^(q - 1)*(m + q + 2*p + 1))), x]
 + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^q*(m + q + 2*p + 1)*Pq - c*
f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x)^(q - 2)*(a*e^2*(m + q - 1) - c*d^2*(m + q + 2*p + 1) - 2*c*d*e*(
m + q + p)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, c, d, e, m, p}, x] && PolyQ[Pq
, x] && NeQ[c*d^2 + a*e^2, 0] &&  !(EqQ[d, 0] && True) &&  !(IGtQ[m, 0] && RationalQ[a, c, d, e] && (IntegerQ[
p] || ILtQ[p + 1/2, 0]))

Rubi steps \begin{align*} \text {integral}& = \frac {(d+e x) \left (a+c x^2\right )^{3/2}}{4 c e^2}+\frac {\int \frac {\sqrt {a+c x^2} \left (-a d e^2-e \left (3 c d^2+a e^2\right ) x-7 c d e^2 x^2\right )}{d+e x} \, dx}{4 c e^3} \\ & = -\frac {7 d \left (a+c x^2\right )^{3/2}}{12 c e^2}+\frac {(d+e x) \left (a+c x^2\right )^{3/2}}{4 c e^2}+\frac {\int \frac {\left (-3 a c d e^4+3 c e^3 \left (4 c d^2-a e^2\right ) x\right ) \sqrt {a+c x^2}}{d+e x} \, dx}{12 c^2 e^5} \\ & = -\frac {\left (8 c d^3-e \left (4 c d^2-a e^2\right ) x\right ) \sqrt {a+c x^2}}{8 c e^4}-\frac {7 d \left (a+c x^2\right )^{3/2}}{12 c e^2}+\frac {(d+e x) \left (a+c x^2\right )^{3/2}}{4 c e^2}+\frac {\int \frac {-3 a c^2 d e^4 \left (4 c d^2+a e^2\right )+3 c^2 e^3 \left (8 c^2 d^4+4 a c d^2 e^2-a^2 e^4\right ) x}{(d+e x) \sqrt {a+c x^2}} \, dx}{24 c^3 e^7} \\ & = -\frac {\left (8 c d^3-e \left (4 c d^2-a e^2\right ) x\right ) \sqrt {a+c x^2}}{8 c e^4}-\frac {7 d \left (a+c x^2\right )^{3/2}}{12 c e^2}+\frac {(d+e x) \left (a+c x^2\right )^{3/2}}{4 c e^2}-\frac {\left (d^3 \left (c d^2+a e^2\right )\right ) \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{e^5}+\frac {\left (8 c^2 d^4+4 a c d^2 e^2-a^2 e^4\right ) \int \frac {1}{\sqrt {a+c x^2}} \, dx}{8 c e^5} \\ & = -\frac {\left (8 c d^3-e \left (4 c d^2-a e^2\right ) x\right ) \sqrt {a+c x^2}}{8 c e^4}-\frac {7 d \left (a+c x^2\right )^{3/2}}{12 c e^2}+\frac {(d+e x) \left (a+c x^2\right )^{3/2}}{4 c e^2}+\frac {\left (d^3 \left (c d^2+a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{e^5}+\frac {\left (8 c^2 d^4+4 a c d^2 e^2-a^2 e^4\right ) \text {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{8 c e^5} \\ & = -\frac {\left (8 c d^3-e \left (4 c d^2-a e^2\right ) x\right ) \sqrt {a+c x^2}}{8 c e^4}-\frac {7 d \left (a+c x^2\right )^{3/2}}{12 c e^2}+\frac {(d+e x) \left (a+c x^2\right )^{3/2}}{4 c e^2}+\frac {\left (8 c^2 d^4+4 a c d^2 e^2-a^2 e^4\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{8 c^{3/2} e^5}+\frac {d^3 \sqrt {c d^2+a e^2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e^5} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.94 \[ \int \frac {x^3 \sqrt {a+c x^2}}{d+e x} \, dx=\frac {\sqrt {c} e \sqrt {a+c x^2} \left (a e^2 (-8 d+3 e x)+c \left (-24 d^3+12 d^2 e x-8 d e^2 x^2+6 e^3 x^3\right )\right )-48 c^{3/2} d^3 \sqrt {-c d^2-a e^2} \arctan \left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+c x^2}}{\sqrt {-c d^2-a e^2}}\right )-3 \left (8 c^2 d^4+4 a c d^2 e^2-a^2 e^4\right ) \log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )}{24 c^{3/2} e^5} \]

[In]

Integrate[(x^3*Sqrt[a + c*x^2])/(d + e*x),x]

[Out]

(Sqrt[c]*e*Sqrt[a + c*x^2]*(a*e^2*(-8*d + 3*e*x) + c*(-24*d^3 + 12*d^2*e*x - 8*d*e^2*x^2 + 6*e^3*x^3)) - 48*c^
(3/2)*d^3*Sqrt[-(c*d^2) - a*e^2]*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a + c*x^2])/Sqrt[-(c*d^2) - a*e^2]] - 3*(8
*c^2*d^4 + 4*a*c*d^2*e^2 - a^2*e^4)*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]])/(24*c^(3/2)*e^5)

Maple [A] (verified)

Time = 0.44 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.26

method result size
risch \(-\frac {\left (-6 c \,x^{3} e^{3}+8 c d \,e^{2} x^{2}-3 a \,e^{3} x -12 c \,d^{2} e x +8 a d \,e^{2}+24 c \,d^{3}\right ) \sqrt {c \,x^{2}+a}}{24 c \,e^{4}}-\frac {\frac {\left (a^{2} e^{4}-4 a c \,d^{2} e^{2}-8 c^{2} d^{4}\right ) \ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right )}{e \sqrt {c}}-\frac {8 d^{3} \left (e^{2} a +c \,d^{2}\right ) c \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}}{8 c \,e^{4}}\) \(266\)
default \(\frac {\frac {x \left (c \,x^{2}+a \right )^{\frac {3}{2}}}{4 c}-\frac {a \left (\frac {x \sqrt {c \,x^{2}+a}}{2}+\frac {a \ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right )}{2 \sqrt {c}}\right )}{4 c}}{e}+\frac {d^{2} \left (\frac {x \sqrt {c \,x^{2}+a}}{2}+\frac {a \ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right )}{2 \sqrt {c}}\right )}{e^{3}}-\frac {d \left (c \,x^{2}+a \right )^{\frac {3}{2}}}{3 c \,e^{2}}-\frac {d^{3} \left (\sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}-\frac {\sqrt {c}\, d \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}\right )}{e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}\right )}{e^{4}}\) \(387\)

[In]

int(x^3*(c*x^2+a)^(1/2)/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

-1/24*(-6*c*e^3*x^3+8*c*d*e^2*x^2-3*a*e^3*x-12*c*d^2*e*x+8*a*d*e^2+24*c*d^3)*(c*x^2+a)^(1/2)/c/e^4-1/8/c/e^4*(
(a^2*e^4-4*a*c*d^2*e^2-8*c^2*d^4)/e*ln(x*c^(1/2)+(c*x^2+a)^(1/2))/c^(1/2)-8*d^3*(a*e^2+c*d^2)*c/e^2/((a*e^2+c*
d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2/e*c*d*(x+d/e)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c-2/e*c*d*(x+d/
e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e)))

Fricas [A] (verification not implemented)

none

Time = 4.13 (sec) , antiderivative size = 963, normalized size of antiderivative = 4.56 \[ \int \frac {x^3 \sqrt {a+c x^2}}{d+e x} \, dx=\left [\frac {24 \, \sqrt {c d^{2} + a e^{2}} c^{2} d^{3} \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} + 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 3 \, {\left (8 \, c^{2} d^{4} + 4 \, a c d^{2} e^{2} - a^{2} e^{4}\right )} \sqrt {c} \log \left (-2 \, c x^{2} + 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right ) + 2 \, {\left (6 \, c^{2} e^{4} x^{3} - 8 \, c^{2} d e^{3} x^{2} - 24 \, c^{2} d^{3} e - 8 \, a c d e^{3} + 3 \, {\left (4 \, c^{2} d^{2} e^{2} + a c e^{4}\right )} x\right )} \sqrt {c x^{2} + a}}{48 \, c^{2} e^{5}}, \frac {48 \, \sqrt {-c d^{2} - a e^{2}} c^{2} d^{3} \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) - 3 \, {\left (8 \, c^{2} d^{4} + 4 \, a c d^{2} e^{2} - a^{2} e^{4}\right )} \sqrt {c} \log \left (-2 \, c x^{2} + 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right ) + 2 \, {\left (6 \, c^{2} e^{4} x^{3} - 8 \, c^{2} d e^{3} x^{2} - 24 \, c^{2} d^{3} e - 8 \, a c d e^{3} + 3 \, {\left (4 \, c^{2} d^{2} e^{2} + a c e^{4}\right )} x\right )} \sqrt {c x^{2} + a}}{48 \, c^{2} e^{5}}, \frac {12 \, \sqrt {c d^{2} + a e^{2}} c^{2} d^{3} \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} + 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 3 \, {\left (8 \, c^{2} d^{4} + 4 \, a c d^{2} e^{2} - a^{2} e^{4}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right ) + {\left (6 \, c^{2} e^{4} x^{3} - 8 \, c^{2} d e^{3} x^{2} - 24 \, c^{2} d^{3} e - 8 \, a c d e^{3} + 3 \, {\left (4 \, c^{2} d^{2} e^{2} + a c e^{4}\right )} x\right )} \sqrt {c x^{2} + a}}{24 \, c^{2} e^{5}}, \frac {24 \, \sqrt {-c d^{2} - a e^{2}} c^{2} d^{3} \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) - 3 \, {\left (8 \, c^{2} d^{4} + 4 \, a c d^{2} e^{2} - a^{2} e^{4}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right ) + {\left (6 \, c^{2} e^{4} x^{3} - 8 \, c^{2} d e^{3} x^{2} - 24 \, c^{2} d^{3} e - 8 \, a c d e^{3} + 3 \, {\left (4 \, c^{2} d^{2} e^{2} + a c e^{4}\right )} x\right )} \sqrt {c x^{2} + a}}{24 \, c^{2} e^{5}}\right ] \]

[In]

integrate(x^3*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="fricas")

[Out]

[1/48*(24*sqrt(c*d^2 + a*e^2)*c^2*d^3*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*s
qrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) - 3*(8*c^2*d^4 + 4*a*c*d^2*e^2 -
a^2*e^4)*sqrt(c)*log(-2*c*x^2 + 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*(6*c^2*e^4*x^3 - 8*c^2*d*e^3*x^2 - 24*c^2
*d^3*e - 8*a*c*d*e^3 + 3*(4*c^2*d^2*e^2 + a*c*e^4)*x)*sqrt(c*x^2 + a))/(c^2*e^5), 1/48*(48*sqrt(-c*d^2 - a*e^2
)*c^2*d^3*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x
^2)) - 3*(8*c^2*d^4 + 4*a*c*d^2*e^2 - a^2*e^4)*sqrt(c)*log(-2*c*x^2 + 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*(6*
c^2*e^4*x^3 - 8*c^2*d*e^3*x^2 - 24*c^2*d^3*e - 8*a*c*d*e^3 + 3*(4*c^2*d^2*e^2 + a*c*e^4)*x)*sqrt(c*x^2 + a))/(
c^2*e^5), 1/24*(12*sqrt(c*d^2 + a*e^2)*c^2*d^3*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*
x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) - 3*(8*c^2*d^4 + 4*a*c*d
^2*e^2 - a^2*e^4)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) + (6*c^2*e^4*x^3 - 8*c^2*d*e^3*x^2 - 24*c^2*d^3*
e - 8*a*c*d*e^3 + 3*(4*c^2*d^2*e^2 + a*c*e^4)*x)*sqrt(c*x^2 + a))/(c^2*e^5), 1/24*(24*sqrt(-c*d^2 - a*e^2)*c^2
*d^3*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2))
- 3*(8*c^2*d^4 + 4*a*c*d^2*e^2 - a^2*e^4)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) + (6*c^2*e^4*x^3 - 8*c^2
*d*e^3*x^2 - 24*c^2*d^3*e - 8*a*c*d*e^3 + 3*(4*c^2*d^2*e^2 + a*c*e^4)*x)*sqrt(c*x^2 + a))/(c^2*e^5)]

Sympy [F]

\[ \int \frac {x^3 \sqrt {a+c x^2}}{d+e x} \, dx=\int \frac {x^{3} \sqrt {a + c x^{2}}}{d + e x}\, dx \]

[In]

integrate(x**3*(c*x**2+a)**(1/2)/(e*x+d),x)

[Out]

Integral(x**3*sqrt(a + c*x**2)/(d + e*x), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^3 \sqrt {a+c x^2}}{d+e x} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x^3*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F(-2)]

Exception generated. \[ \int \frac {x^3 \sqrt {a+c x^2}}{d+e x} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^3*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \sqrt {a+c x^2}}{d+e x} \, dx=\int \frac {x^3\,\sqrt {c\,x^2+a}}{d+e\,x} \,d x \]

[In]

int((x^3*(a + c*x^2)^(1/2))/(d + e*x),x)

[Out]

int((x^3*(a + c*x^2)^(1/2))/(d + e*x), x)